(3x^2-9)=(2x+9)

Simple and best practice solution for (3x^2-9)=(2x+9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x^2-9)=(2x+9) equation:



(3x^2-9)=(2x+9)
We move all terms to the left:
(3x^2-9)-((2x+9))=0
We get rid of parentheses
3x^2-((2x+9))-9=0
We calculate terms in parentheses: -((2x+9)), so:
(2x+9)
We get rid of parentheses
2x+9
Back to the equation:
-(2x+9)
We get rid of parentheses
3x^2-2x-9-9=0
We add all the numbers together, and all the variables
3x^2-2x-18=0
a = 3; b = -2; c = -18;
Δ = b2-4ac
Δ = -22-4·3·(-18)
Δ = 220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{220}=\sqrt{4*55}=\sqrt{4}*\sqrt{55}=2\sqrt{55}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{55}}{2*3}=\frac{2-2\sqrt{55}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{55}}{2*3}=\frac{2+2\sqrt{55}}{6} $

See similar equations:

| 3=28.35c | | 4+x+12/x=8 | | 6=12h | | 6=258g | | 7=245p | | 6y-4=10y-60 | | 130p=5 | | 56h=4 | | 8x+8+2x-2=66 | | y/5.6=12 | | x^2+5x+6=) | | 366=x-30 | | 4x/6+x/5=2/3-x/5 | | 5(-3x+5)=-3 | | 43=32+v | | 180=73+13+x | | 30=x-366 | | 422x/48=3/12 | | 8^8x=4 | | v=4/3*3.14*216 | | 2/3=6/x4/7=x/42 | | -2x+15=(-9) | | 46=3(r+6)+5(r+) | | X2+x+8+2x=43 | | 60000+35x=60x | | 2x^​2+33x−54=0 | | 2x^​2​​+33x−54=0 | | 14x-36=76 | | 160=400-4x | | -4x-4=3x-10 | | 10x-2x+3x+7=3x+7=3(3x-4)+19 | | -40=24+8x |

Equations solver categories